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S U B M O D E L  O F  R O T A T I O N A L  M O T I O N S  I N  G A S  D Y N A M I C S  

S. V. Khab i rov  UDC 517.944 + 533 

An invariant submodel of  the equations of gas dynamics constructed on a one-dimensional 
subalgebra consisting of  the sum of operators of  rotation and translation in time is studied 
within the framework of  the SUBMODELS program. The system of equations of  the submodel is 
brought to symmetr ic  form.  Hyperbolicity conditions for  the system are derived. Group analysis 
is performed and an invariant solution is considered. Isobaric flows are listed. For the simplest 
of  them, characteristics and strong discontinuities are considered. Necessary conditions for 
existence of  solutions without singularities on the axis are derived. 

1. E q u a t i o n s  of  t h e  S u b m o d e l .  The equations of gas dynamics are considered in the cylindrical 
coordinates t, z, r,  and 0; U, V, and W are the velocity projections onto the unit vectors, and p and p 
are the pressure and density. The invariant solution [1] is written in terms of the invariants of the operator 
X7 + Xlo = Os + Or: U = u, V = v, W = r(w + 1); the functions u, v, w, p, and p depend on x, r, and 
s = 0 - t; therefore, on the level line of the functions, a point moves in a circle at a constant circular velocity. 
Substitution of this representation of the solution into the equations of gas dynamics gives the following 
equations of the submodel: 

D u  + p - l ( p , , p r , r - 2 p s )  = C 0, r(w + 112, - 2 r - l v ( w  + 111 = a, 

Dp + A d i v u  = - r - l A y ,  Dp + p d i v u  = - r - l p v .  (1.1) 

Here u = (u ,v ,w)  = (ul ,u2,  uS), d ivu  - uz + Vr + Ws, D = uOz +rOt  + WOs, A -- A(p,p)  = pc 2, c 2 = Of /Op, 
p = f(p,  S) is the equation of state, and S is the entropy. 

System (1.11 is brought to symmetric form. For this, instead of the last equation we write the equation 
for the entropy D S  = 0. The  linear replacement of the velocities v i = b~u k, u/~ = ~ v  i, and bimc~ n = $~ reduces 
system (1.1) to the following system for the vector function q = (v 1, v 2, vS,p, S)t: 

Biqxi = F. (1.2) 

i l k n  m Here x 1 = ~:. x ~- = r.  x 3 = s .  F = ( d l . d 2 . d 3 . d ~ . 0 ) ' .  d ~ = - , / ( r - l f f  + c/" ,.). ~ = b~a k + pb .:~cko c...v . 
a - -  ( a l , a 2 , a 3 ) ,  

pc{kv k 

0 
B i = 0 

ci 
0 

gll  = g22 = 1, and g33 = r -2  (i = 1, 2, 3). 

0 0 b~g ii 0 
p4 ,, k o b~ g" 0 

0 pc~.v ~ b~g ii 0 
c~ c' 3 A -  l c~ v k 0 
0 0 0 c~v k 

The matrices B i are symmetric if the following conditions are satisfied: 

4 = b~g". (1 3 )  

Institute of Mechanics, Ural Scientific Center, Russian Academy of Sciences, Ufa 450000. Translated 
from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 37-45, November-December,  1"998. 
Original article submitted January 20, 1997; revision submitted May 22, 1997. 

850 0021-8944/98/3906-0850 $20.00 (~) 1999 Kluwer Academic/Plenum Publishers 



Hence, we obtain Ici[ 2 = gii and c i .  c k = 0 (i # k), where c i = (ci,ci2, c~) t. Therefore, if the direction of one 
of the vectors c i is specified, then the matrix c~ is completely determined with accuracy up to the rotation 
around this direction. 

System (1.2) and (1.3) is symmetric hyperbolic if one of the matrices B i is positive definite. The 
eigenvalues B i are calculated from the formulas 

A~ = ui = c~v k, A~, 3 pu i, A i 1 ( 1  ) = 4,5 = ~ (P + A - l )  ui -4- (p - A-1)2(ui) 2 -I- gii 1/2. 

This leads to the positive-definite conditions p > 0 and u i > c(gii) 1/2 > O. 
The characteristics of system (1.2) and (1.3) are found from the equality 

3 
det y~  Bi~ i = O, 

i=1 

where ~ = (~1,~2,~3) is a normal vector to the characteristic surface. We obtain the triple characteristic Co: 
3 

E ui~i = O, and two other  characteristics are possible, which are defined by the equality 
i=1 

u'~' - c  2 ~  ck = 0 .  
i=1 k = l  i---1 

This equality is written in matrix form as ~H~ t -- 0 [2], where H = h | h - G(z ) ,  h = (h 1, h 2, h3), 
h i -- c - l u  i, and G = (9 ik) = diag(1, 1 , r-2) .  If the eigenvalues of the matrix H, which are all real, have 
different signs, there are two real characteristics C• 

The equation tha t  defines the eigenvalues has the form 

/ (A)  = A3 _ jIA2 + J2A - J3 = o, 

where 

J1 = t r H  = Ihl 2 - t r G  = lul2c -2 - 2 - r-2; 

�9 /2 = t r H  -1 det  H = t r  G -1 d e t G  - Ih]2 tr G + h G h t =  1 + 2r -2 - !u!2c-2(1 + r -2 )  + w2c-2( r  -2  - 1); 

J3 = det H = det G ( - 1  + h G -1 h t) = r - 2 ( - 1  + lul2c -~ + w % - 2 ( r  2 - 1)). 

According to the Routh  theorem, the number of positive roots of the polynomial f(A) is equal to the 
number of sign inversions in the sequence 1, -J1 ,  J2 - J3J{  l, and -J3 .  

The hyperbolicity region of system (1.1) for a fixed solution is defined by the systems of inequalities 

�9 /1 >0 ,  
J l < O ,  
, ] 1 < 0 ,  

if the sign inversions are one in number and by 

J1 > 0 ,  
. / 1 > 0 ,  
J l < O ,  

if the sign inversions are two in number 

J2Jl < J3, J3>O,  
J2Jl > J3, J3>O,  
J2Jl < J3, J 3 > O  

J2Jl > J3, J3 < O, 
J2Jl < J3, J3<O,  
J2Jl > J3, .13<0 

Solving these inequalities, we come to the following proposition. 
P r o p o s i t i o n  1. System (1:1) is hyperbolic on a solution in the region defined by the inequality 

u 2 + v  2 + r 2 w  2 > c  2. (1.4) 

In physical variables, condition (1.4) becomes U 2 + V 2 + (W - r) 2 > c 2, from which it follows that for 
large r, system (1.1) is always hyperbolic even for subsonic physical velocities. For W _~ r, inequality. (1.4) 
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TABLE 1 

No. A Augmentation operators 

2 
3 
4 
5 
6 
8 
9 

10 
11 
12 
13 

p~(pp- ' )  
p~(pp- ' )  

~(p) 
p~(p) 

7P 
~(p~-~) 

~(p) 
-rp~ 

P 
1 
0 

(3' - 1)Z + 27Yp 
I,p 
Z 

z+2Yp 
Yp, Z 

Z - 2Ya 
Y1 

Y~ , ('r - 1) z + 2.r y,, 
Vp,Yx 
YI,Z 

z ,  Y~(,) 

is not necessarily satisfied, although the physical flow is supersonic. This distinguishes system (1.1) from the 
system of equations for steady flows. 

2. Group  Class i f ica t ion and  Invar ian t  Solut ion.  System (1.1) admits the equivalence 
transformations x' = a l x ,  r '  = a l  r ,  u '  = a l u ,  v '  = a i r  , p '  = a2p, pt = a2a2(p + a3), and A' = a~a2A, 
where ai are parameters; the remaining variables are invariant. With an arbitrary function A(p,p),  system 
(1.1) admits the Abelian algebra L2 = {0z, Os}, which is the kernel of admissible algebras "and the normalizing 
factor of the subalgebra X7 + X10 in the algebra Ln  of the equations of gas dyn~anics [1]. Augmentation 
of the kernel occurs in exactly the same cases as for the initial model [1] (see Table 1), except for the case 
A - (5/3)p. The numbering in Table 1 is the same as in Table 1 of [1]: Z - xOz + rOr + uOu + vO~ - 2pOp, 
and Y~(p) - t~'(p)0p + ~(p)Op, where ~ is an arbitrary function. This table is a result of group classification 
of system (1.1) by an arbitrary element A. 

R e m a r k .  Any augmentation of the kernel is a quotient algebra of the normalizer of the subalgebra 
XT + X10 in the corresponding augmentation Ln  on an ideal Xz + X10, because, from the augmentations of 
Table 1 in [1], it is easy to select operators that coincide in invariant variables with the operators given in 
Table 1 of the present paper for the corresponding augmentations. 

The optimal system of subalgebras for the kernel is obvious, because for Abelian algebras there are no 
nontrivial internal automorphisms. We consider an invariant solution constructed using the algebra L2. The 
solution u, v, w, S, p depends only on r. For v # 0, five integrals for the quotient system are valid: 

s ( p , p )  = & ( p s p  + A S s  = 0), u = uo, rvp = Eo, r2(1 + w) = B,  

E~r-2p  -2 + I(p) + r - 2 B  2 - C 2. (2.1) 

P 

Here So, u0, E0, w0, B, and C are constants and I = 2 [ p - l c 2 ( p ) d p  >t O. 

0 

Propos i t ion  2. For an ordinary gas, Eq. (2.1) gives a limited two-value function p(r) defined in 
the region r >1 ro > O. The first branch Pl > p > p(ro) = Po, for  which the radial velocity is subsonic, 
increases monotonically. The second branch 0 < p < P0, for  which the radial velocity is supersonic, decreases 
monotonically. 

P r o o f  follows from the properties of the function l i p  ) for an ordinary gas [3, p. 101]. 
In physical variables, the solution is defined by the formulas U = u0, V = E o r - l p  -1 , and W = Br -1 . 

It describes steady gas flow from a" cylindrical nonpoint source r i> r0 with swirl W # O. 
For v = O, the solution with three arbitrary functions 

u(r), w(r), p(r), p = r-lp'(w + 1) -2 (2.2) 

describes steady stratified motion of particles along helical lines on the cylinders. 
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3. I sobar ic  F lows .  For the submodel considered here, there is a wide class of flows with constant 
pressure p = p0. The general solution of isobaric flows is obtained in [4]. In the present paper, we give another 
representation of the solution for the submodel. System (1.1) becomes overdetermined: 

u u z + v U r + W U s = ( O , r ( w + l ) 2 , - 2 r - l v ( w + l ) ) ,  d i v u + r - l v = O ,  u p x + v p r + w p s = O .  (3.1) 

This system admits,  besides the translations 0x and 0s, two stretchings x0x + utg,, and rc3r + vO~. Thus, 
from any exact solution with constant pressure, the indicated admissible group allows one to obtain a solution 
with five arbitrary constants. The general admissible group cannot be calculated until (3.1) is reduced to 
involution, although it is possible to indicate two other admissible operators 0p and pop. 

System (3.1) is integrated in Lagrangian variables, one of which is the streamline parameter r: 

Here the point ({, r/, ~) lies on a two-dimensional surface that is not tangent to the field (u, v, w). System (3.1) 
becom~ 

u , = O ,  v r = r ( w + l )  2 , w r = - 2 r - l v ( w + l ) ,  p r = O ,  r ( u x + w s ) + ( r v ) r = O . -  (3.3) 

With accuracy up to the stretchings, the solution of (3.2) and (3.3) is 

x = ~ + r ,  r 2 = r / 2 + r  2 + 2 r f ,  ~ l r c o s ( s + r - ~ ) = 7 / 2 + r  f ,  
(3.4) 

u = l ,  v = r - ' ( r + f ) ,  w = - l q - r - 2 ( r / 2 - f 2 ) 1 / 2 ,  P = P o ,  

where f = '7 sin (r + ~ -  ~o( f -  ~)) and ~o(,~) is an arbitr~y function. The quantities ~, '7, r and f are functions 
of two parameters. Any two of them can be used as parameters. The translations admitted by system (3.1) 
specify transformations of the similarity between the solutions. The general solution (3.4) is divided into two 

Case 1. ~ and t /a re  parameters and ~ = 0, f(~, T/): 

r = x - - ~ ,  r s i n ( s + r ) = r c o s ( ~ - - ~ ) ,  r c o s ( s + r ) = r / + r s i n ( ~ - - ~ ) ,  

r/ sin (~ -- ~o) = f ,  u = l ,  v = r - l ( r + f ) ,  w = - - l + r - l c o s ( ~ - - ~ ) .  

For ~o(A) = -A,  we obtain an invariant 0z-sohtion. 
Case 2. r / and  ~ are parameters and ~ = 0, f(~,t/): 

f = 7 / s in  (r - ~ ( f ) ) ,  r 2 = r/2 + z 2 + 2x f ,  r/r cos ( s  + x - r  = 112 -~- 2:f,  

u = l ,  v = r - l ( z - I - y ) ,  w = - - l + r - 2 r / c o s ( r  

For ~o = 0, the solution is defined by explicit formulas. 
A simple solution is obtained from (3.4) for f = 0: 

rs in(s+x-~(-~))=x-~,  u = l ,  v=sin(s+z-~(-~)), w = - l  +r-lcos(s+x-~(-~)). 
If, in addition to that ,  ~ = 0, we obtain a periodic solution which is specified everywhere except for 

the x axis. Using stretchings, translations, and inversions (the constants can take negative values as well), we 
can reduce it to a simple solution that depends on five constants: 

u = uo, v = qosin(s + u o l x -  so), w = - l  + qor-l  cos(s + u o l x -  so), 
(3.5) 

P = Po, P = Po. 

In physical variables, the solution becomes 

U = u 0 ,  V = q 0 s i n ( x u o  1+ 0 - t + 0o ), W = qo cos ( zuo  1+ 0 - t + 0o ), 

P = P0, P = P0. 
(3.6) 

This solution defines gas flow from the x axis. 
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4. C h a r a c t e r i s t i c s  a n d  s t r o n g  d i s c o n t i n u i t i e s .  Characteristic surfaces for the equations of gas 
dynamics can be constructed for an invariant solution of submodel  (1.1) [3, p. 60]. 

The  invariant characterist ic surfaces h(x ,  r, s) = coast are defined by the submodel  (1.1): 

Co: uhz  + vh~ + whz  = O, 
c~:  u h ,  + ~ ,  + wh~ + cq = 0, q = (h 2_ + h~ + r - ~ ) , / ~ .  

The bicharacteristics are defined by the equations 

Co: dox = u, dot  = v, dos = w (streamline), 

C+: d+x = u -4- coshzq -1, d+r  = v 4- coshrq -1, d+s = w 4- coshsr-2q -1, 

d.4.h = :t=c(1 - r-2)h2sq -1 ,  d:t:h, = - u z h =  - vxhr - w,.hs :F c ,q ,  

d.4-hr = - u r h z  - urhr - wrhs  4- coshs2r-3q - ]  ~ Crq, d•  = - u s h z  - vrhr - wshs  :t= csq. 

For solution (3.5), the  streamline is the irregular helical line qo(z - zo)  cos (s + z u o  1) = r0u0 sin (s - 
so + u'~](x - z0)) on the surface of revolution formed by the hyperbola u~r 2 = q2(x - z0) 2 + 2(x - 
xo)rouoqo sin (so + z0) + r02. In this case, the characteristic surface is defined by the equation qox = 
u o r s i n ( u o ] Z  + s)  + ~ o ( r c o s ( u o l z  + s)) .  The region of existence of the characteristics C+ is given by the 
inequality r 2 - 2rqo cos ( s + Uol X - so) > C2o - u 2 - q~. 

For r = 0, the supersonic flow condition is obtained. 
For solution (3.5), the  equations of the bicharacteristics have two integrals, uohz - hs = C1 and 

h 2 + r -2hs  2 = C22, which, together  with the equation of the characteristics ~ = s + u ~ l x ,  ttohz + qo sin Shr + 
( - 1  + qo r-~  cos $)hs 4- co(h2z + h2r + r-2h2s)]/2 = 0, give all derivatives of the function h. Since the integrals 
are in involution, h is defined by the quadrature 

h = C + C ~ u ; ~  + Ca J,-cos,,,d~, + s i n w d r ,  (4.1) 

where the function w = w(A, r) satisfies the equation 

q0 co s (~  - ~) 4- ~0[~o2(C~c~ -~ + r cos~)  2 + 1] ~/~ = 0. 

Equation (4.1) gives the  full integral of the equation for the  characteristics C• It is used to determine 
characteristics for solutions [4]. 

The  surface of a strong discontinuity in cylindrical coordinates is given by the equation F ( t ,  x,  r, O) = O. 
The normal and the normal  velocity are 

n = V c F [ V c f [  -1, D ,  = - F t [ V c F [  -1 ,  V :  = (0z, Or, r-100). 

For an invariant surface and invariant solution the following equalities are valid: 

F = h ( x , r , s ) ,  Dn = hsq -1,  n = (h:c, hr, r - l h s ) q  -1 ,  

q = (h 2 + h2r + r-2h2s) U2, w = un - On = (uh,, + vhr + whs)q  -1 ,  

n t ,  = u - unn  = (u(1 -- hzq -1 ) , v (1  - h r q - 1 ) , w  - (w + 1 )q - lh s ) .  

A contact discontinuity [3, p. 38] is characterized by the conditions [p] = 0, u,, = D,,, and [u~] # 0. In 
invariants, the equalities become 

Lp] = p2 - pl = o, uihz  + vihr + wihs = 0, i = 1, 2. (4.2) 

The  subscripts t and 2 denote the limiting values on the discontinuity surface on its different sides. 
P r o p o s i t i o n  3. For solutions (3.5), an invariant contact discontinuity is possible only for  ul = u2 = uo, 

[q] # 0: 

h = ruo(ql  cos (s + UolX + s l )  - q2 cos (s + u o l x  + s2)) + qlq2x sin (sl - s2) = C. (4.3) 
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P r o o f .  For solut ions (3.5), equalities (4.2) are wri t ten as 

~ h  = uih:: + qi sin (s + si + uT 'x)hr  + ( - 1  + qir -1 cos (s + si + u~-lx))hs = 0. (4.4) 

This sys tem should be  closed, and, hence, the  equation 

[Y1, Y2]h = (Ul - u2)(q2u~' cos (s + s2 + uT'x) + q, u l  I cos (s + s, + u?'x))h~ 

- -r- l (q2u21 sin (s + s2 + u2"lx) -4- qlUl 1 sin (s + sl + u-~lx))hs = 0 (4.5) 

should hold by vi r tue  of (4.4). 
The  invariants of Eq. (4.4) for i = 1 are 

I = r q l  I c o s  ( s  + 31 "4" UllX),  J = X U l  I - -  r q l  1 sin (s + Sl + u' f lx) .  

In these invariants,  Eq. (4.4) for i = 2 becomes  

h l ( ~ z u ' {  1 - J)  + q2ql lu71 sin (s2 - s l  + zex)) + h t(u-{ 1 + eel + q2qllu21 cos (s2 - Sl Jr aex)) = 0, (4.6) 

where ee = u~ "1 - U l  1. 

The  funct ions x, sin(s2 - Sl + eex), and cos (s2 - Sl + eex) are  linearly independent ,  and t h e  variable x 
is free in (4.6). Hence,  x should  not  enter  into (4.6). This is possible only for ee = 0, i.e., u2 = ul = u0. Then,  
(4.5) holds identically, and  solution (4.6) takes the form (4.3). 

A shock wave is defined by the relations [3, p. 39] 

[ u , l # 0 ,  ~ = p _ ~ p ~ - p l . ,  ~ i = p l r ~ - p l  H(p~,p2;p, ,p , )=0,  [u~]=0,  
Pl  P2 --  Pl  P2 P2 - -  P l '  

where H is a Hugoniot  funct ion,  and un and ua  are the  normal  veloci ty  and the velocity component  tangent  
to the  shock-wave surface. T h e  last vectorial  equat ion is equivalent to the  following sys tem of equat ions for 
an invariant shock wave: 

[ul-lh,, = [ v ] - l h ,  = r-2[W]-lhs = q[w1-1 .  (4 .7)  

This leads to the  equa l i ty  

[u]2 + [v]2 + r2[w]2 = [~]2. (4.8) 

P r o p o s i t i o n  4. For solutions (3.5) a shock wave cannot exist. 
P r o o f .  For an invariant  shock wave, Eq. (4.8) takes the  form 

[w] 2 -- [u] 2 -- ql 2 - q22 + 2q1 q2 cos ([s] + x(u~ 1 - -  t t l  1)) = 0. 

Hence, Ul = u2 = u0 and [w] 2 4- 2qlq2 cos [s] = ql 2 + q22. 
From (4.7) we ob ta in  the  equalit ies hz - 0 and 

[w]2h 2 = (q2 sin (s + s2 + u ~ l x ) -  ql s in ( s  + sl + xu~l))(h2T + r-2h2s). 

In the  last equali ty,  x is a free variable. Equat ing the x-dependent  coefficients of the  linearly independent  
functions to zero, we have (/2 = ql and s2 = s l ,  i.e., [u] = 0, which contradicts  the proposit ion.  

In the  same manner ,  it is proved tha t  there cannot  be  a noninvariant  shock wave. 
An invariant shock wave  in the form of an Archimedes screw can connect  two different solutions of the 

form (2.2). 
P r o p o s i t i o n  5. An invariant shock transition is possible on solutions (2.2). In this case, on one side 

of  the discontinuity it is possible to specify a solution with two arbitrary functions, and on the other side, 
solution (2.2) is determined with accuracy up to a solution of an ordinary differential equation of the first 
o r d e r .  

P r o o f .  Let the  gas flow on both  sides of an invariant shock wave h(x, r, s) = 11o be defined by 
functions (2.2): 

. ,  = 0, u~(r),  w~(r), p~(r), p, = r - ' p} (w~  + 1) -2  
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Equalities (4.7) take the form hr = 0 and [u]- ihz = r-2[w]- ihs .  Hence, 

[u] = cr2[to],  (4.9) 

where C is an arbitrary constant  and h = s + Cx.  Thus,  the shock-wave surface is an Archimedes screw. 
We determine the relative velocities wi = (Cui  + wi)(C 2 + r -2)  -1/2 at which equality (4.8) holds identically. 
From the equations of shock transit ion we determine 

r -1  I i P2 = G(p2,P1, Pl(Wl + 1)-2),  [p] ---- G - Pl (Wl -at- 1 ) -2 r  -1,  

Cu l  + tol ----- r - l ( r 2 C  2 + 1)I/2(G[p])I/2(pl[p])-I/2, 

Cu2 + w2 = r - l ( r 2 C 2  + 1)l/2(G[p])-l/2(p1[p])l/2. 

Substi tut ion of these expressions into (4.9) gives the differential equation for P2: r(C2r  2 + 1)p~(p~/2 - (1 + 
wz)(rG)l/2) 2 = (p2 - p i ) ( G r ( t o l  + 1) 2 - p ~ ) .  The functions toi(r) and pz(r) can be chosen arbitrarily. 

On the whole, the shock-wave surface is given by one step of a helical surface. Its trace on the cylinder 
is bounded by helical streamlines ahead of the shock and behind it. If the angle between the velocity vector 
and the cylinder axis behind the shock increases, then behind the helical curve of the shock, on~ should place 
a wall bounded by the helical streamlines behind the shock and a portion of the helical curve ahead of the 
shock whose length is equal to the step of the helical curve of the shock. If this angle decreases, then ahead of 
the helical curve of the shock one should place a wall bounded by the helical streamlines ahead of the shock 
and a portion of the helical curve behind the jump,  whose length is equal to the  step of the helical curve of 
the jump.  

5. S o l u t i o n s  w i t h o u t  S i n g u l a r i t i e s  on  t h e  Axis .  Submodel  (1.1) for r = 0 can have a singularity. 
A solution without  a singularity is represented as a series in nonnegative powers of the variable r. Substitution 
of the series into system (1.1) leads to the necessary condition for existence of such solutions. The  series should 
have the form 

t o =  Eto  *, p =  p =  

k! -1Dk A o o o o . . . ,  A = ~ ' ~ A k r  ~, A k = ( . )  rA(p,p)]rffio = apk+App~_2+Appplpk_l+A~aplp~_3 + (5.1) 

0 Ao = A ~ = A(po, P),  Az = Appz, 

where D~ is the kth power of the operator  of full differentiation with respect to r; summat ion  is performed 
over whole k t> 0. 

The  quantit ies with zero satisfy the equations of the principal term of the asymptot ic  representation 

Douo = - p o l e  I, Dovo = - v  2 + (1 + wo) 2 - 2poZpo, Dotoo + poZPo, -- -2v0(1 + too), 

Dopo = - A o Z p o u o P  ', u0z + W0s = -2v0 - A o l u o P  ', Do = uoOz + woos. (5.2) 

System (5.2) is a Cauchy-type system in the variable s for too ~ 0. The  quantities P~(x) and Ao = A(po, P) 
axe arbitrary elements. The  system can be subjected to group analysis. The  quantities uk, vk, Pk, and Pk 
(k > 0) axe determined from the linear equations 

Douk = --(uo~ + kvo)uk -- UOsWk + P'p~2pk + g~, 

Dovk = -voxu~ - (k + 2)york + (2 + 2wo - vo,)wt~ + 2popo2pk - (k + 2)PoZpk + g2 k, 

Dowk + po lpks  --- --toOzUk -- 2(w0 + 1)vk - (w0s + (k + 2)v0)wk + PosPO2pk "-1- gk, (5.3) 

D o p ~  = ( A o l p o P  ' - po,)u~,  - p o , w k  + ( A o l u o p  ' - Ao-2pouo~-n"~ _ k v o ) p k  + ak4, 

ukz + wks = - A ~ l P ' u k  - (k + 2)vk + Ao2uoP'A~ + gk 5, 

where g~ are expressed in terms of ut, vt, wt, pl, and P/-1, l = 0 , . . . , ( k  - 1). For k = 1, we obtain the 
homogeneous linear system g~ = 0, i = 1 , . . . ,  5. 
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System (5.3) is a Cauchy-type system in the variable s for w0 ~ 0. Thus, the formal series (5.1) can 
be constructed. This form of series is necessary for existence of a solution without a singularity on the axis. 

The algebra admitted by (5.2) is sometimes extended to the variables of systems (5.3). For example, 
for P" = 0, the algebra of system (1.1) is admitted, and, hence, invariant solutions for Eqs. (5.2) and (5.3) 
can be constructed. 

In the case w0 = 0, system (5.2) should be tested for compatibility. There are two integrals 
A(po, P)pot = -poP '  ==~ S(po, P) = C(s) ==~ po = g(P, C) and u ] + I ( P , C )  = E2(s), where 

I = 2 J g - l ( P ,  c )dP,  which give the form of the solution 

1 1 ._3u2['1 poaO~],  2 p 0 = P 0 [ 1 - ~ P " ( p ~ l - u ~ m o  I) _ 2 P,2( 3po2uo2 _ polmo 1+,~o o ~  A~ + A~ ~ + P]]J 

2v0 = P' (poluff I - uoAol). 

It remains to satisfy the compatibility equation uopos + (1 - u2opoA~l)P ' = O. 
For an arbitrary function A(p0, P), this is possible only for P' = 0. Hence, P and C are constants, 

p0 = Co is a constant, p0 = (1/2)CO, v0 = 0, and u0 = E(s) is an arbitrary function. Systems'(5.3) are thus 
compatible. 
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